107 research outputs found

    Using the Literature to Identify Confounders

    Get PDF
    Prior work in causal modeling has focused primarily on learning graph structures and parameters to model data generating processes from observational or experimental data, while the focus of the literature-based discovery paradigm was to identify novel therapeutic hypotheses in publicly available knowledge. The critical contribution of this dissertation is to refashion the literature-based discovery paradigm as a means to populate causal models with relevant covariates to abet causal inference. In particular, this dissertation describes a generalizable framework for mapping from causal propositions in the literature to subgraphs populated by instantiated variables that reflect observational data. The observational data are those derived from electronic health records. The purpose of causal inference is to detect adverse drug event signals. The Principle of the Common Cause is exploited as a heuristic for a defeasible practical logic. The fundamental intuition is that improbable co-occurrences can be “explained away” with reference to a common cause, or confounder. Semantic constraints in literature-based discovery can be leveraged to identify such covariates. Further, the asymmetric semantic constraints of causal propositions map directly to the topology of causal graphs as directed edges. The hypothesis is that causal models conditioned on sets of such covariates will improve upon the performance of purely statistical techniques for detecting adverse drug event signals. By improving upon previous work in purely EHR-based pharmacovigilance, these results establish the utility of this scalable approach to automated causal inference

    Preliminary Evaluation of a Measure for Reliable Assessment of Need for Constant Visual Observation in Adults with Traumatic Brain Injury

    Get PDF
    Primary objective: To develop and provide initial validation of a measure for accurately determining the need for Constant Visual Observation (CVO) in patients with traumatic brain injury (TBI) admitted to inpatient rehabilitation. Research design: Rating scale development and evaluation through Rasch analysis and assessment of concurrent validity. Methods and procedures: One hundred and thirty-four individuals with moderate–severe TBI were studied in seven inpatient brain rehabilitation units associated with the National Institute for Disability, Independent Living and Rehabilitation Research (NIDILRR) TBI Model System. Participants were rated on the preliminary version of the CVO Needs Assessment scale (CVONA) and, by independent raters, on the Levels of Risk (LoR) and Supervision Rating Scale (SRS) at four time points during inpatient rehabilitation: admission, Days 2–3, Days 5–6 and Days 8–9. Outcomes and results: After pruning misfitting items, the CVONA showed satisfactory internal consistency (Person Reliability = 0.85–0.88) across time points. With reference to the LoR and SRS, low false negative rates (sensitivity > 90%) were associated with moderate-to-high false positive rates (29–56%). Conclusions: The CVONA may be a useful objective metric to complement clinical judgement regarding the need for CVO; however, further prospective study is desirable to further assess its utility in identifying at-risk patients, reducing adverse events and decreasing CVO costs

    Social Competence Treatment after Traumatic Brain Injury: A Multicenter, Randomized, Controlled Trial of Interactive Group Treatment versus Non-Interactive Treatment

    Get PDF
    Objective To evaluate the effectiveness of a replicable group treatment program for improving social competence after traumatic brain injury (TBI). Design Multicenter randomized controlled trial comparing two methods of conducting a social competency skills program, an interactive group format versus a classroom lecture. Setting Community and Veteran rehabilitation centers. Participants 179 civilian, military, and veteran adults with TBI and social competence difficulties, at least 6 months post-injury. Experimental Intervention Thirteen weekly group interactive sessions (1.5 hours) with structured and facilitated group interactions to improve social competence. Alternative (Control) Intervention Thirteen traditional classroom sessions using the same curriculum with brief supplemental individual sessions but without structured group interaction. Primary Outcome Measure Profile of Pragmatic Impairment in Communication (PPIC), an objective behavioral rating of social communication impairments following TBI. Secondary Outcomes LaTrobe Communication Questionnaire (LCQ), Goal Attainment Scale (GAS), Satisfaction with Life Scale (SWLS), Post-Traumatic Stress Disorder Checklist – (PCL-C), Brief Symptom Inventory 18 (BSI-18), Scale of Perceived Social Self Efficacy (PSSE). Results Social competence goals (GAS) were achieved and maintained for most participants regardless of treatment method. Significant improvements in the primary outcome (PPIC) and two of the secondary outcomes (LCQ and BSI) were seen immediately post-treatment and at 3 months post-treatment in the AT arm only, however these improvements were not significantly different between the GIST and AT arms. Similar trends were observed for PSSE and PCL-C. Conclusions Social competence skills improved for persons with TBI in both treatment conditions. The group interactive format was not found to be a superior method of treatment delivery in this study

    A prospective evaluation of the safety and efficacy of the TAXUS Element paclitaxel-eluting coronary stent system for the treatment of de novo coronary artery lesions: Design and statistical methods of the PERSEUS clinical program

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Paclitaxel-eluting stents decrease angiographic and clinical restenosis following percutaneous coronary intervention compared to bare metal stents. TAXUS Element is a third-generation paclitaxel-eluting stent which incorporates a novel, thinner-strut, platinum-enriched metal alloy platform. The stent is intended to have enhanced radiopacity and improved deliverability compared to other paclitaxel-eluting stents. The safety and efficacy of the TAXUS Element stent are being evaluated in the pivotal PERSEUS clinical trials.</p> <p>Methods/Design</p> <p>The PERSEUS trials include two parallel studies of the TAXUS Element stent in single, de novo coronary atherosclerotic lesions. The PERSEUS Workhorse study is a prospective, randomized (3:1), single-blind, non-inferiority trial in subjects with lesion length ≤28 mm and vessel diameter ≥2.75 mm to ≤4.0 mm which compares TAXUS Element to the TAXUS Express<sup>2 </sup>paclitaxel-eluting stent system. The Workhorse study employs a novel Bayesian statistical approach that uses prior information to limit the number of study subjects exposed to the investigational device and thus provide a safer and more efficient analysis of the TAXUS Element stent. PERSEUS Small Vessel is a prospective, single-arm, superiority trial in subjects with lesion length ≤20 mm and vessel diameter ≥2.25 mm to <2.75 mm that compares TAXUS Element with a matched historical bare metal Express stent control.</p> <p>Discussion</p> <p>The TAXUS PERSEUS clinical trial program uses a novel statistical approach to evaluate whether design and metal alloy iterations in the TAXUS Element stent platform provide comparable safety and improved procedural performance compared to the previous generation Express stent. PERSEUS trial enrollment is complete and primary endpoint data are expected in 2010. PERSEUS Workhorse and Small Vessel are registered at <url>http://www.clinicaltrials.gov</url>, identification numbers NCT00484315 and NCT00489541.</p

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    Upper limits on the strength of periodic gravitational waves from PSR J1939+2134

    Get PDF
    The first science run of the LIGO and GEO gravitational wave detectors presented the opportunity to test methods of searching for gravitational waves from known pulsars. Here we present new direct upper limits on the strength of waves from the pulsar PSR J1939+2134 using two independent analysis methods, one in the frequency domain using frequentist statistics and one in the time domain using Bayesian inference. Both methods show that the strain amplitude at Earth from this pulsar is less than a few times 102210^{-22}.Comment: 7 pages, 1 figure, to appear in the Proceedings of the 5th Edoardo Amaldi Conference on Gravitational Waves, Tirrenia, Pisa, Italy, 6-11 July 200

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.

    Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers

    Get PDF
    We study frequency dependent (FD) input-output schemes for signal-recycling interferometers, the baseline design of Advanced LIGO and the current configuration of GEO 600. Complementary to a recent proposal by Harms et al. to use FD input squeezing and ordinary homodyne detection, we explore a scheme which uses ordinary squeezed vacuum, but FD readout. Both schemes, which are sub-optimal among all possible input-output schemes, provide a global noise suppression by the power squeeze factor, while being realizable by using detuned Fabry-Perot cavities as input/output filters. At high frequencies, the two schemes are shown to be equivalent, while at low frequencies our scheme gives better performance than that of Harms et al., and is nearly fully optimal. We then study the sensitivity improvement achievable by these schemes in Advanced LIGO era (with 30-m filter cavities and current estimates of filter-mirror losses and thermal noise), for neutron star binary inspirals, and for narrowband GW sources such as low-mass X-ray binaries and known radio pulsars. Optical losses are shown to be a major obstacle for the actual implementation of these techniques in Advanced LIGO. On time scales of third-generation interferometers, like EURO/LIGO-III (~2012), with kilometer-scale filter cavities, a signal-recycling interferometer with the FD readout scheme explored in this paper can have performances comparable to existing proposals. [abridged]Comment: Figs. 9 and 12 corrected; Appendix added for narrowband data analysi

    Search for gravitational wave bursts in LIGO's third science run

    Get PDF
    We report on a search for gravitational wave bursts in data from the three LIGO interferometric detectors during their third science run. The search targets subsecond bursts in the frequency range 100-1100 Hz for which no waveform model is assumed, and has a sensitivity in terms of the root-sum-square (rss) strain amplitude of hrss ~ 10^{-20} / sqrt(Hz). No gravitational wave signals were detected in the 8 days of analyzed data.Comment: 12 pages, 6 figures. Amaldi-6 conference proceedings to be published in Classical and Quantum Gravit
    corecore